VOITH

IPC Catalog Medium-pressure internal gear pumps

Benefits that impress

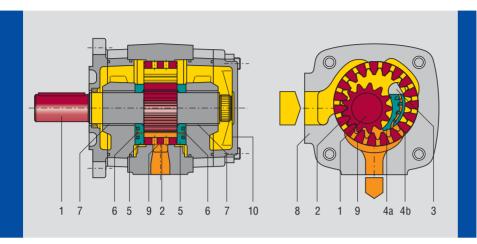
Internal gear pumps from Voith Turbo are working reliably in hundreds of thousands of machines worldwide. Sophisticated technology, robust design and cost-efficient operation have convinced thousands of customers to trust Voith. Based on that trust, we have become the world market leader for high-pressure internal gear pumps with gap compensation.

Features that count

The market requires hydraulic pumps that are quiet and compact with minimal pressure and volume pulsation whilst at the same time being highly efficient. Voith Turbo has met these requirements with the IPC pumps. The radial and axial sealing gap compensation with volume-optimized involute gearing contribute in meeting these requirements.

Machines that run

Rarely seen, but hard at work in countless machines, Voith Turbo internal gear pumps reliably provide high pressures. They are mainly used in the plastic and sheet-metal processing sectors, presses as well as conveying and lifting equipment. The pumps are also in demand for shipbuilding, municipal vehicles, power plants and special machine building.


Contents

Die-casting machine, pump with variable flow thanks to motor drive speed control

Р	age
Design and function	3
Performance data	4
IPC 4	6
IPC 5	8
IPC 6	10
IPC 7	12
SAE suction and pressure flanges	14
Multi-flow pumps Pump combinations	15
Designs	16
Type code Order designation	17

Design and function

- 1 Pinion shaft
- 2 Internal gear
- 3 Filler pin
- 4a Filler segment carrier
- 4b Filler sealing segment
- 5 Axial disc
- 6 Axial pressure area
- 7 Plain bearings
- 8 Housing
- 9 Hydrostatic relieved bearing
- 10 End cover with bleeder screw
- Suction chamber
- Pressure chamber

Design features

- Internal gear principle
- Plain bearings
- Radial and axial sealing gap compensation
- Volume-optimized involute gearing

Product characteristics

- Long service life
- High volumetric efficiency
- High overall efficiency
- Very low flow and pressure pulsation
- Low noise levels
- Compact dimensions
- Low weight
- Wide speed range
- Excellent suction properties
- Wide viscosity range
- Simple maintenance
- Multiple pumps and pump combinations are possible
- Suitable for variable-speed drives (variable volume flow)
- Motor operation possible (energy recovery)

Function

Rotation of the gears within the pump draws in the pressure fluid (usually hydraulic oil) into the space between the pinion and internal gear. The two smooth running gears help to ensure excellent intake behavior.

In the radial direction, the gear chambers are sealed by gear meshing and the filler piece. In the axial direction, the axial plates seal the pressure chamber with the minimal possible gap. This design minimizes volume losses and increases efficiency.

When the gears rotate, the pinion teeth enter the gaps between the internal gear teeth and displace the pressure fluid.

Combinations

IPC pumps can be combined to form dual or multi-flow pumps.

Combinations with other Voith Turbo pump series are also possible. Used in conjunction with pumps from the high and low-pressure series, Voith equipment can handle a wide range of potential applications.

For further information on possible combinations, refer to page 15 and our brochure No. G1714 (Voith multi-flow pumps).

Combinations with third-party products are generally possible. We'll be happy to discuss your needs.

Variable volume flow

We supply complete hydraulic units with IPC pumps, asynchronous motors and frequency converters (EPA/EPAF system) to generate variable volume flows. For further information, see our brochure No. G1420 (Voith EPA System).

Performance data

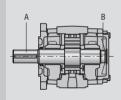
esign		Calculatio	ns
-	Internal gear pump with radial and	Delivery	$Q = V_{g th} \cdot n \cdot \eta_{v} \cdot 10^{-3} [I/min]$
	axial sealing gap compensation		
уре	IPC	Power	$P = \frac{Q \cdot \Delta p}{600 \cdot \eta_0} \text{ [kW]}$
lounting types	SAE hole flange; ISO 3019/1 or		600 · η _g
	VDMA hole flange; ISO 3019/2	V _{g th}	Pump volume per revolution [cm ³]
ine mounting	SAE suction and pressure flange J 518 C code 61	n	Speed [min-1]
otation direction	clockwise or anti-clockwise	ην	Volumetric efficiency
lounting position	any	η _g	Overall efficiency
haft load	For details of radial and axial drive shaft loads,	∆ р	Differential pressure [bar]
	please contact your Voith Turbo representative		
nput pressure	0.83 bar absolute pressure		
	(at start, briefly 0.63 bar)		
ressure fluid	HLP mineral oils DIN 51524, part 2 or 3		
iscosity range of the pressure fluid	10100 mm ² s ⁻¹ (cSt)		
ermissible start viscosity	max. 2000 mm ² s ⁻¹ (cSt)		
ermissible temperature of the pressure fluid	-20+80 °C		
lecessary purity of the			
ressure fluid in accordance with NAS 1638	Class 8		
iltration	Filtration quotient min. $\beta_{20} \ge 75$,		
	recommended $\beta_{10} \ge 100$ (longer service life)		
	-10+60 °C		

Characteristics						
Туре,	Displacement	Spo	eed	Delivery	Pressi within the range	
size-	per revolution	min.	max.	at 1500 min ⁻¹	Continuous pressure	Peak pressure
delivery	[cm ³]	[min ⁻¹]	[min ⁻¹]	[l/min]	[bar]	[bar]
IPC 4 – 20	20.7	400	3200	31.0	210	250
IPC 4 – 25	25.4	400	3000	38.1	210	250
IPC 4 – 32	32.6	400	3000	48.9	210	250
IPC 5 – 40	41.0	400	2800	61.5	210	250
IPC 5 – 50	50.3	400	2600	75.4	210	250
IPC 5 – 64	64.9	400	2600	97.3	210	250
IPC 6 - 80	80.7	400	2400	121.0	210	250
IPC 6 - 100	101.3	400	2200	151.9	210	250
IPC 6 – 125	126.2	400	2200	189.3	210	250
IPC 7 – 160	160.8	400	2000	241.2	210	250
IPC 7 – 200	202.7	400	1800	304.0	210	250
IPC 7 – 250	251.7	400	1800	377.5	210	250

The values given apply for:

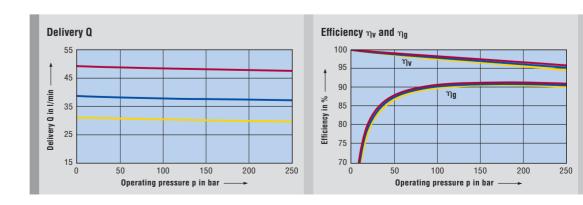
- Pumping of mineral oils with a viscosity of 20...40 mm²s⁻¹
- An input pressure of 0.8...3.0 bar absolute.

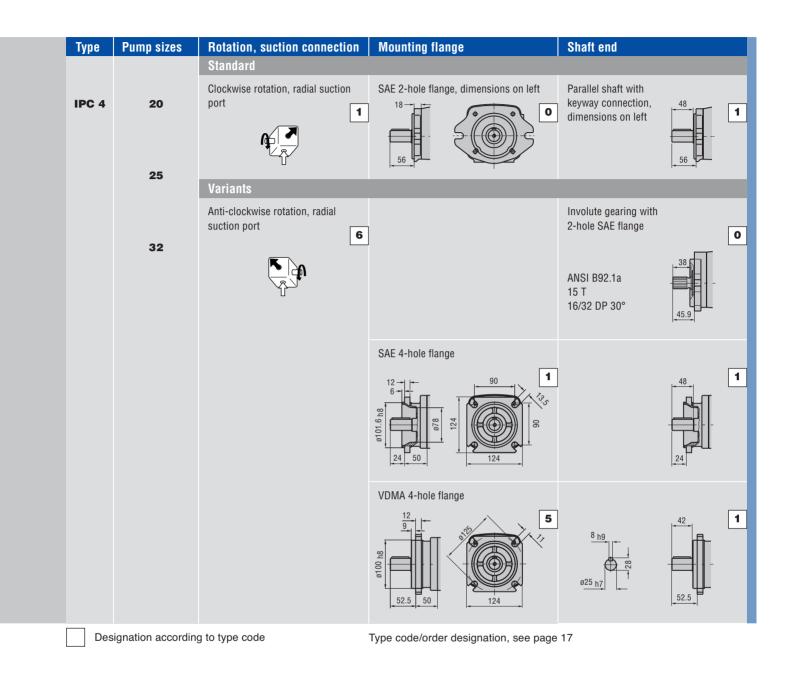
Notes:

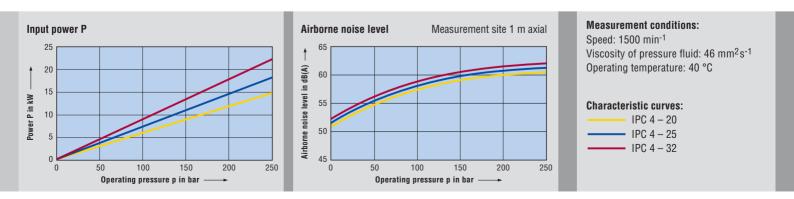

- Peak pressures apply for 15% of operating time and a maximum cycle time of 1 minute.
- Please enquire about pressures lower than n_{min}.
- Due to production tolerances, the pump volume may be approx.1.5% lower.

Standard designs

Design and dimensions | Sample | Sampl

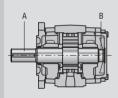

* The plug screw must be closed during operation. Ensure the M10x1 plug screw, hexagon socket SW5, is tightened to a torque of 10 Nm. Depending on the pump position, filling or ventilation is possible with the M10x1 plug screw prior to commissioning.


Design		Dimensions											SAE flange no.	
	C	е	g	h	i	k	ı	r	V	w	Weight			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Thread	[mm]	[mm]	Thread	[kg]			
IPC 4 – 20	98	31	18	27	58.7	30.2	M10x15	47.5	22	M10x15	9.6	11	13	
IPC 4 – 25	104	31	18	30	58.7	30.2	M10x15	47.5	22	M10x15	10.2	11	13	
IPC 4 – 32	113	31	18	32	58.7	30.2	M10x15	47.5	22	M10x15	11.0	11	13	

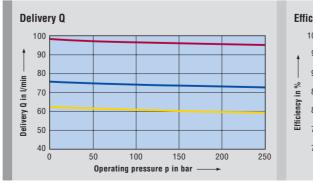


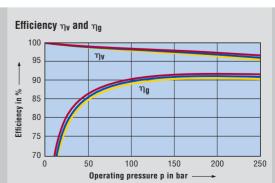
Permitted input torques:

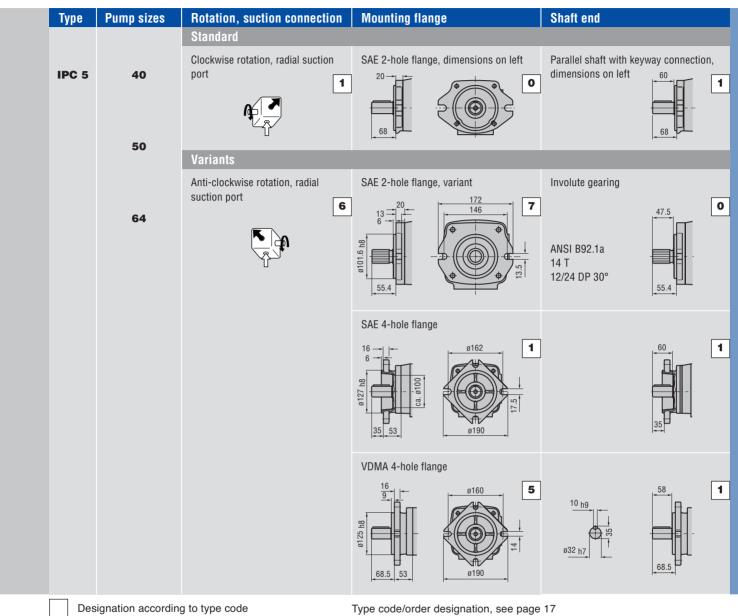
Input shaft A: 335 Nm Secondary shaft B: 190 Nm

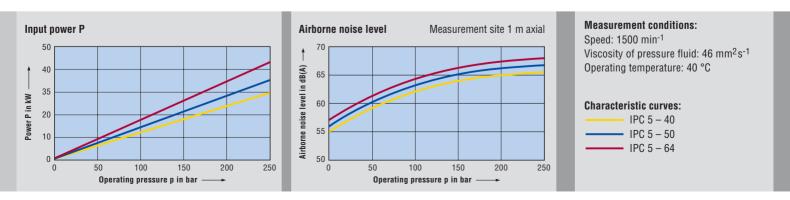

Note: Measurement taken in a low-noise room. In an anechoic room, the measurements are approx. 5 dB(A) lower.

Standard designs

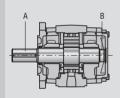

* The plug screw must be closed during operation. Ensure the M10x1 plug screw, hexagon socket SW5, is tightened to a torque of 10 Nm. Depending on the pump position, filling or ventilation is possible with the M10x1 plug screw prior to commissioning.


Design		Dimensions											SAE flange no.	
	C	е	g	h	i	k	ı	r	V	w	Weight			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Thread	[mm]	[mm]	Thread	[kg]			
IPC 5 – 40	125	36	19	35	70	36	M12x20	52.4	26.2	M10x15	16.3	12	30	
IPC 5 - 50	132	36	21	40	70	36	M12x20	52.4	26.2	M10x15	17.4	12	30	
IPC 5 – 64	163	36	23	40	70	36	M12x20	52.4	26.2	M10x16	18.7	12	30	



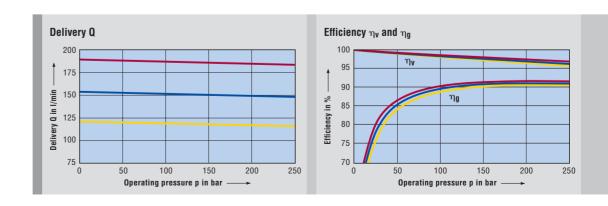

Permited input torques:

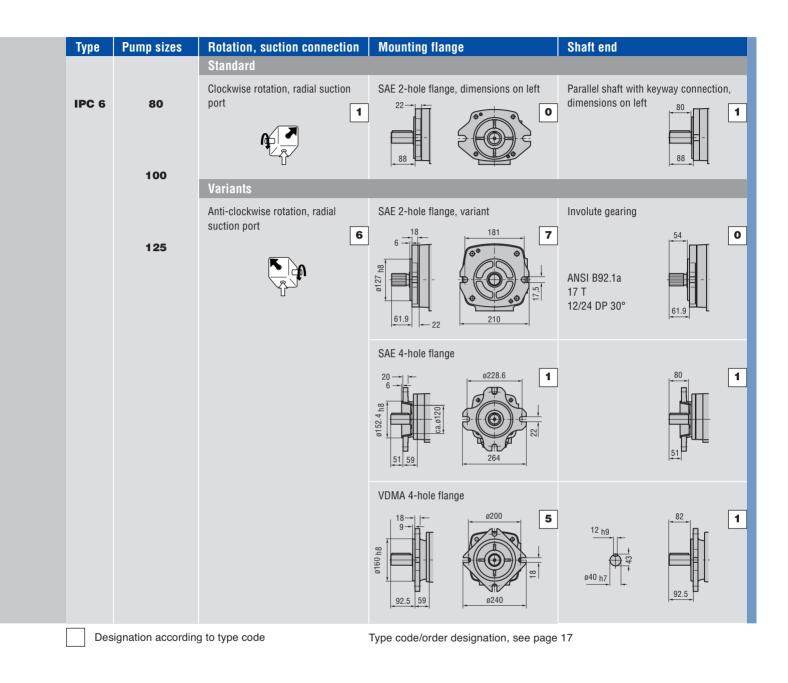
Input shaft A: 605 Nm Secondary shaft B: 400 Nm


Note: Measurement taken in a low-noise room. In an anechoic room, the measurements are approx. 5 dB(A) lower.

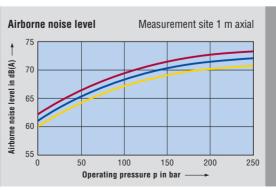
Standard designs

Design and dimensions 20 COLUMN 12 199 12 199 240 177 250 264 228.6 228.


* The plug screw must be closed during operation. Ensure the M10x1 plug screw, hexagon socket SW5, is tightened to a torque of 10 Nm. Depending on the pump position, filling or ventilation is possible with the M10x1 plug screw prior to commissioning.


Design	Dimensions											SAE flange no.	
	C	е	g	h	i	k	I		V	w	Weight		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Thread	[mm]	[mm]	Thread	[kg]		
IPC 6 - 80	148	35	23	45	77.8	42.9	M12x20	70	36	M12x20	30.7	14	15
IPC 6 - 100	158	35	27	50	77.8	42.9	M12x20	70	36	M12x20	32.6	14	15
IPC 6 - 125	170	40	30	50	77.8	42.9	M12x20	70	36	M12x20	35.0	14	15

Permited input torques:


Input shaft A: 1050 Nm Secondary shaft B: 780 Nm

Input power P

100
80
60
00
50
100
150
200
250
Operating pressure p in bar

Measurement conditions:

Speed: 1500 min⁻¹

Viscosity of pressure fluid: 46 mm²s⁻¹

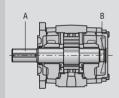
Operating temperature: 40 °C

Characteristic curves:

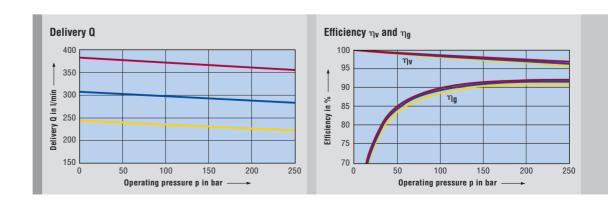
IPC 6 – 80

IPC 6 – 100

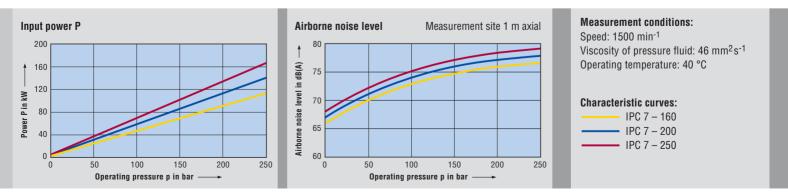
IPC 6 – 125


Note: Measurement taken in a low-noise room. In an anechoic room, the measurements are approx. 5 dB(A) lower.

Standard designs


* The plug screw must be closed during operation. Ensure the M10x1 plug screw, hexagon socket SW5, is tightened to a torque of 10 Nm. Depending on the pump position, filling or ventilation is possible with the M10x1 plug screw prior to commissioning.

Design		Dimensions											SAE flange no.	
	C	е	g	h	i	k	ı	r	V	w	Weight			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Thread	[mm]	[mm]	Thread	[kg]			
IPC 7 – 160	162	48	30	56	89	50.8	M12x20	70	36	M12x20	50	14	16	
IPC 7 – 200	174	46	34	62	89	50.8	M12x20	70	36	M12x20	54	14	16	
IPC 7 – 250	188	42	38	72	106.3	62	M16x25	70	36	M12x20	59	14	16	



Permited input torques:

Input shaft A: 1960 Nm Secondary shaft B: 1200 Nm

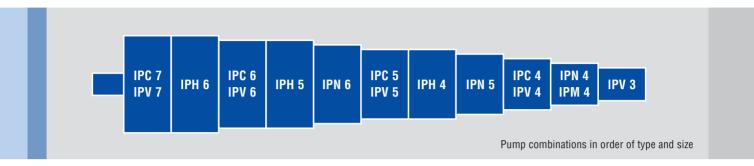


Note: Measurement taken in a low-noise room. In an anechoic room, the measurements are approx. 5 dB(A) lower.

SAE suction and pressure flanges

according to SAE J 518 C code 61

SAE flange, single-piece



SAE flange no.	A	В	C	D	E1)	i	k	S ²⁾	max. pressure
	Thread	[mm]	[mm]	[mm]	Seal ring	[mm]	[mm]	Thread	[bar]
10	G ¹ / ₂	46	54	36	18.66 – 3.53	38.1	17.5	M 8	345
11	G ³ / ₄	50	65	36	24.99 - 3.53	47.6	22.2	M 10	345
12	G 1	55	70	38	32.92 - 3.53	52.4	26.2	M 10	345
13	G 1- ¹ / ₄	68	79	41	37.69 – 3.53	58.7	30.2	M 10	276
14 ³⁾	G 1- ¹ / ₂	82	98	50	47.22 – 3.53	70	36	M 12	3453)
30	G 1- ¹ / ₂	78	93	45	47.22 – 3.53	70	36	M 12	207
15	G 2	90	102	45	56.74 - 3.53	77.8	42.9	M 12	207
16	G 2-1/ ₂	105	114	50	69.44 - 3.53	89	50.8	M 12	172
17	G 3	124	134	50	85.32 - 3.53	106.3	62	M 16	138
18	G 4	146	162	48	110.72 - 3.53	130	77.8	M 16	34

¹⁾ Round seal ring (O-ring) ISO-R 1629 NBR 2) Machine screw EN ISO 4762 3) Special design, deviating from SAE J 518 C code 61

Multi-flow pumps

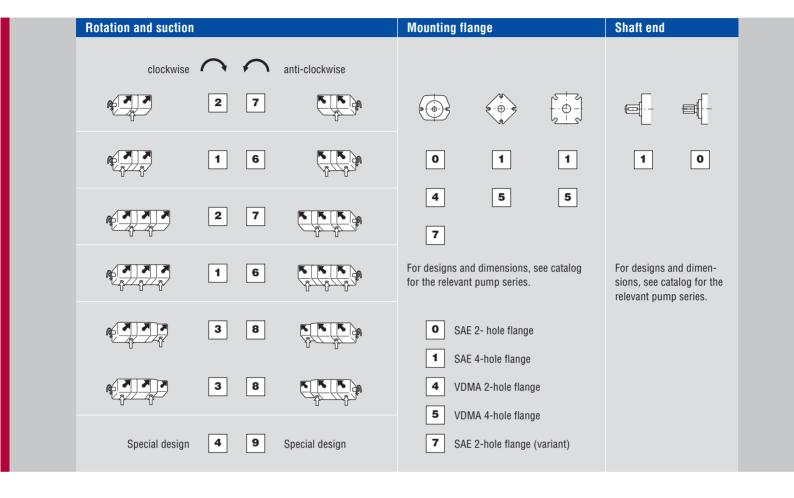
Pump combinations

Combinations of IPC pumps

- IPC pumps of identical or different sizes can be combined to form multi-flow pumps.
- All sizes with each displacement are available as two or three-flow pumps; four-flow pumps must be designed by Voith Turbo.
- The pumps are arranged in increasing order according to size and delivery.

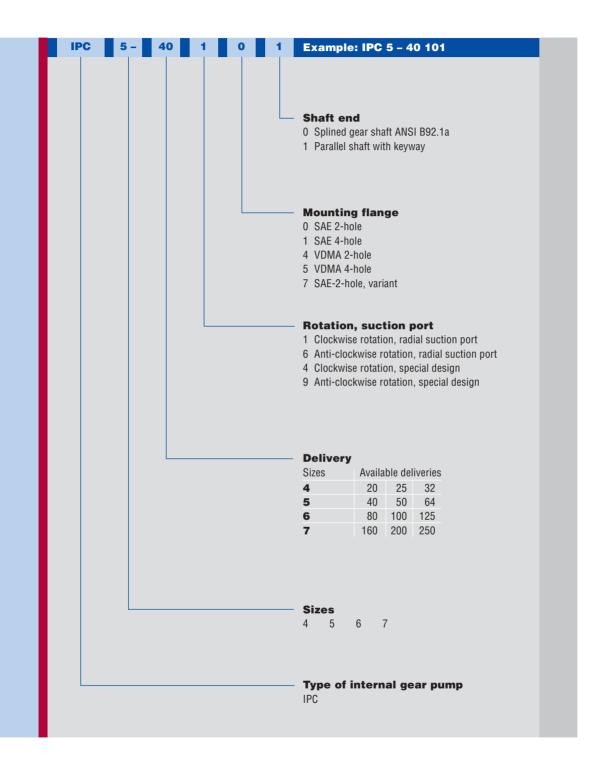
Combination of IPC/IP... pumps

- It is possible to combine IPC pumps with other Voith Turbo pump series (e.g. high-pressure pumps IPV or low-pressure pumps IPN).
- The pumps are arranged by type and size, as shown in the illustration above.
- If identical types or identical sizes follow each other, the pump with the higher pump flow is placed closer to the drive.


Connection, assembly

- As a rule, multi-flow pumps are mounted to the drive using a flange. All information on flange designs and shaft ends is contained in the relevant pump series catalog.
- For further relevant information, such as how to determine the adapter housing, see brochure No. G 1714 (Voith Multi-Flow Pumps).

Selection


- Identify the pressure ranges and then choose the appropriate pump series.
- 2. Identify the deliveries, and then select the appropriate size(s).
- 3. Define the sequence of the pumps.
- 4. Check the torque.
- 5. Determine the direction of rotation and suction.
- 6. Specify the mounting flange and shaft end.

Designs

Type code

Order designation

Voith Turbo GmbH & Co. KG Hydrostatics Alexanderstr. 2 89522 Heidenheim, Germany Tel. +49 7321 37-4573 Fax +49 7321 37-7809

hydrostatik@voith.com www.voithturbo.com/hydrostatics.htm

Voith internal gear pumps

used around the world

Plastics injection molding machine

Folding press

Punching press

Hydraulic unit

Lifting platform

Marine applications

Additional applications:

- Die-casting machines
- Packing presses
- Shears
- Ground drilling machines
- Test rigs
- Hydraulic presses
- Crane building
- Lifting devices
- Garbage collection vehicles

